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Coulomb interaction and the Fermi liquid state: solution by 
bosonization 
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AhstracL We investigate the effects of the Coulomb two-body interaction on Fermi liquids 
via bosonization in two and three spatial dimensions. The Coulomb interaction is singular in 
the limit of low mOmenNm tnnsfer, and recent interest in the possibility that some singular 
interactions might destroy the Fermi liquid state motivate us to reexamine it. We calculate 
the exact boson correlation function to show that the Fermi liquid state is retained in the case 
of Coulomb interactions in two and three dimensions. Spin and charge degrees of freedom 
propagate together at the Same velocity and collective charge excitations @lasmons) exhibit the 
expected energy gap in three dimensions. Non-Fermi liquid behaviour occurs in two dimenstons, 
however, for B super-long-range iotenction studied recently by Bnres and Wen. 

The many body problem of fermions interacting via the Coulomb interaction is central to 
condensed matter physics. The standard method for studying this problem is the summation 
of ring diagrams which arise in perturbation theory: the random phase approximation 
(RPA) [I]. Recently, another approach to this problem based on the renormalization group 
(RG) has been developed [2]. Both the RPA and the RG calculations assume that the Fermi 
quasiparticle propagator retains the Fermi liquid form with a simple pole. This assumption 
is shown to be self-consistent since in both approaches the bare Coulomb interaction is 
screened down to a short-range form. On the other hand, it is desirable to develop tools 
that do not rely on the intermediate assumption of a Fermi liquid propagator to ascertain 
whether non-Fermi liquid states are solutions of systems with singular interactions. 

Bosonization in dimensions greater than one 13-51 is particularly well suited to the 
study of singular long-range interactions as the realm in which it is applicable, for low- 
energy excitations near the Fermi surface, is precisely where these interactions are strongest. 
Furthermore, bosonization does not rely upon a Fermi liquid form for the quasiparticle 
propagator; for example, it encompasses the possibility of spin-charge separation. Our 
results, however, are unambiguous: we find that the Fermi liquid state is the solution to 
the Coulomb problem. By using the bosonization transformation to determine the fermion 
quasiparticle propagator, we obtain well-known results for the fermion self energy: the 
imaginary part is proportional to o2 In Io1 in two dimensions and just o2 in three dimensions. 
We emphasize that the bosonization method yields non-perturbative information, so a natural 
next step would be to use it to study the effects of transverse gauge interactions. 

We begin with the bare Hamiltonian for electrons or other fermions interacting via the 
two-body Coulomb or other long-range longitudinal interaction V ( q ) :  
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where tk  = k2/2m for the case of a Fermi gas and there is an implicit sum over repeated 
spin indices 01 and ,3. Then we integrate out the high-energy Fermi degrees of freedom 
with the use of the renormalization group [2 ,6] .  The resulting low-energy effective theory 
is expressed in terms of quasiparticles @h which obey canonical anticommutation relations 
and which are related to the bare electron operators via the wavefunction renormalization 
factor z k :  

@ku = Zi'' 'Cku (2) 
for momenta k restricted to a narrow shell of thickness h around the Fermi surface: 
kF - 112 c llcl c kF + 112. The resulting low-energy Fermi liquid Hamiltonian is 

Here Zk = k2/2m' incorporates the mass renormalization. The charge current in a given 
Fermi surface patch S (where S = (8. @) in three dimensions) is defined by 

(4) 

Here 8(S k )  = 1 if k lies inside a squat box of dimensions h x AD-' cenwed at S and 
is zero otherwise. The regular terms in (3) do not diverge in the q -+ 0 limit and consist 
of both large-q exchange processes and effective interactions generated by the high-energy 
electrons that have been integrated out. We assume in the following that no superconducting 
or charge or spin density wave instabilities arise from the regular terms. 

We now review the main aspects of bosonization and refer the reader to two previous 
papers [4.5] for more details. In D spatial dimensions, the Fermi quasiparticle fields of 
spin-o, @o, may be expressed [4] in terms of the Abelian boson fields @o as 

3 J(s; 4)  = k + k)I@E,Pak - 6,.0 n k ) .  
k 

where the dependence on time, t ,  is included implicitly in the spatial coordinates 2, and S 
labels the patch on the Fermi surface with momentum ks. Vol is the volume of the system, 
which equals L D  in D dimensions; the factor &i is introduced to keep the fermion 
anticommutation relations canonical. Both the @ and $ fields live inside the squat box 
centred on S with height h in the radial (energy) direction and area AD-' along the Fermi 
surface. These two scales must be small in the following sense: k~ >> A >> h. We 
satisfy these limits by setting h kF/N and A = kF/N', where 0 c 01 c 1 and N -+ W. 
The quantity a in the bosonization formula (5) is a real-space cutoff given by a = l / h .  Here 
S2 A D - 1 ( L / 2 n ) D  equals the number of states in the squat box divided by A. Finally, 
O(S) is an ordering operator introduced [4,7] to maintain Fermi statistics in the angular 
direction along the Fermi surface. (Anticommuting statistics are obeyed automatically in 
the radial direction.) 

With the connection (5) between the fermion and boson fields we may bosonize the free 
Hamiltonian. The result is quadratic in the $ fields: 
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The total bosonized Hamiltonian may be written as H = H,+H,, exhibiting the factorization 
into charge and spin sectors. The charge Hamiltonian is bilinear in the current operators [4] 
J(S;  4 ) :  

Long-range interactions V(p) are incorporated into V, as matrix elements that couple 
currents in different patches: 

1 
V d S ,  T q) = fQ-'uF6;,' + ,,V(q). (8) 

@+ + 4' by J(S; x) = The charge currents are related to the charge boson field @ 
&As. V@(S x). They obey the equal-time U(1) current algebra relation [4]: 

(9)  D-l D [ J ( s ;  q), P)1 = 2Q6S,T 8q+p.0 q .  As. 

Similarly, the spin sector is described by a Hamiltonian which has a free part 

and an interaction part that depends on the regular Fermi liquid spin-spin coefficients &. 
Here the Abelian spin currents J, commute with the charge currents and are expressed in 
terms of the spin boson field bZ = @I - 41 by J,(S; x) = &As. V4L(% z). The 
interaction term has two parts: a term that couples the z component of the spin currents in 
different patches and a term that couples the x and y components which has the form 

We note that the coefficients & are invariant under the renormalization group transformations 
despite the fact that the above term resembles the form of the bosonized BCS interaction [SI. 
The crucial difference is that here the boson fields do not appear in pairs at opposite points 
of the Fermi surface. The fl function for the coefficients fs therefore equals zero. For 
simplicity we set f,(S, T) = 0 in the following. 

We now calculate the exact boson Green function in the charge sector. To simplify the 
calculation we restrict our attention to the case of spherical (circular in two dimensions) 
Fermi surfaces and set the Fermi velocity equal to one. None of these simplifications 
is essential. First, we write the charge currents in terms of boson operators that satisfy 
canonical commutation relations. The choice 

~(s ;  9) = J ~ [ Q ( s ;  q ) w s  - 4 )  + a+(% -q)e(-fis. q)i (12) 

with 

(13) D-IsD b(S; q), a+(T; PI1 = 6S.T q ,p  
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and e ( x )  = 1 if x t 0 and zero otherwise, satisfies the U(1) current commutation relation 
(9). The momentum-frequency space propagator for the a fields is related to the propagator 
of the @ fields by 

As the interaction V ( q )  has no dependence on the patch indices S and T, a straightforward 
generalization of our previous calculation [SI for the short-range interaction Fo allows us to 
consmuct the boson propagator. The exact solution of the Dyson equation for the irreducible 
self-energy is given by 

The Lindhard function ,yo in two dimensions is given by 

where x w/lql and N ( 0 )  is the density of states at the Fermi energy, which in two 
dimensions equals k F / r  in units where up = 1. In three dimensions the Lindhard function 
is 

xo(x) = N ( 0 )  [ 1 - f x  In (3 - D = 3 .  

Despite the fact that a perturbative expansion [5] has been used as an intermediate step to 
obtain (15), all terms in the expansion have been summed yielding the exact non-perturbative 
result valid for arbitrary dimension D. For example, when the interaction is short ranged, in 
D = 1 the resummed expansion yields the well known exact result for a Luttinger liquid [4]. 

In the N + 00 limit in which q + 0 the self-energy simplifies because V ( q )  -+ 00. 
For finite x we obtain 

Screening is apparent at finite x ,  even in the boson propagator, as the self-energy in  the 
small-q limit no longer depends on V ( q ) .  The velocity is renormalized slightly from its 
bare value of unity, U; = 1 + O(A/kF)D-'. and the boson lifetime is now finite because 
of scattering into different patches. Note, however, that these changes represent irrelevant 
corrections as the self-energy (15) scales to zero as A 3 0. In particular, the pole in the 
boson propagator remains unchanged as N -+ W. In the opposite o-limit 181 of x -+ 03 

the denominator in (15) vanishes at frequencies corresponding to the eigenvalues of the 
collective mode equation; consequently the self-energy diverges at these frequencies and in 
the threedimensional Coulomb case the plasmons acquire a gap as expected [I]. 

Evidently long-range longitudinal interactions modify the boson propagator. Though 
BCS scattering processes were ignored, small-angle scattering processes made the boson 
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lifetime finite. With these results we can use the bosonization formula (5 )  to infer the 
fermion quasiparticle self-energy. Since bosonization is carried out in (I, r )  space we 
must carry out three operations. First, we Fourier transform the charge and spin boson 
propagators into real space and use the Abelian relation @T,L = +(@ f 6:) to consmct the 
boson propagator for, say, up spins. Next, the exponential of the resulting expression yields 
the fermion propagator in real space. Finally, an inverse Fourier transform of the fermion 
propagator back into momentum space allows us to extract the self-energy. 

It is difficult technically to perform these steps in full generality. It will be sufficient for 
our purposes to estimate the imaginary part of the fermion self-energy. The charge boson 
Green function may be written in configuration space as 

iG&% x, t )  = (@(S; I, t ) @ ( S  0,O) - @'(ER 0,O)) = im(G, (S  k, 0)) 

=. 

= im{G:')(S; k, o) + G:')(S; k, w)) (1% 

where FT represents the Fourier transform operation that converts the variables (k, w )  to 
(I, t )  and also subtracts out the x = t = 0 component. The first term, GL'), is the free 
charge boson propagator given in real space by 

-+ -m l x ~ . A l > >  1 (20) 

where I~ denotes spatial directions perpendicular to the surface normal AT. The second 
term, due to interactions, is given by 

where in the second line we have specialized to the particular case of finite x and singular 
interactions V(q). The imaginary part of the fermion self-energy, which comes from GC) 
in the limit of 1x1 < 1 for which quasiparticle damping occurs, may now be estimated 
by exponentiating (19) and expanding to first order in the imaginaq part. The fermion 
propagator in real space is given by 

iGf(S; I, t )  (@+(S; I, t ) @ ( S  0,O)) 

Here G, is the free. spin boson propagator. The correction to the fermion propagator in 
(k, w )  space is then given by 
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where components of vectors parallel to the surface normal are denoted by, for example, 
411 = 4.6s. The integral over 411 may be performed by complex integration; no divergences 
occur since all the poles in the complex 411 plane lie either on one side of the real axis or 
the other unless o' lies between 0 and o. Extracting the leading conhibution to the fermion 
self energy at the pole we obtain (for D = 2) 

which form we recognize immediately from previous work on the quasiparticle lifetime 
within the RPA approximation [9]. The quantity inside the braces is always negative since 
2n02A cc h2kp In three dimensions the calculation yields 

(25) 

the appearance of the momentum cutoff 1 in this expression coincides with that found in 
traditional Fermi liquid theory [lo]. In the classic RPA calculation [ I l l  the cutoff A. is 
replaced by an energy of order of the plasma frequency due to a different weighting of the 
high-energy states. 

In the case of Coulomb interactions V(q) c( Iql'-D the weight of the quasiparticle 
pole, ZF, remains non-zero at the Fermi surface. In contrast, super-long-range interactions 
can destroy the quasiparticle pole. For example, Bares and Wen [I21 studied a logarithmic 
interaction in two dimensions, given in momentum space by V ( q )  = g/qz. and showed 
that ZF = 0 within RPA. Note that g is a momentum scale of order of the Fermi momentum 
and the plasmon gap is non-zero due to the super-long-range nature of the interaction and 
is given by op m. In fact, this system may form a Wigner crystal; we ignore 
any such 2 k ~  instabilities in the following analysis. We confirm that the quasiparticle 
pole is destroyed in the super-long-range case via bosonization. One might be tempted to 
compute ZF by using the Kramers-Kronig relation to derive the real part of the self-energy 
from the imaginary p m  estimated above. This procedure, however, is unreliable. as the 
Kramers-Kronig relations involve an integral over the entire energy range, whereas the 
above calculation ignores the emission of plasmons by quasiparticles. Instead we calculate 
the exact real-space fermion two-point function directly. To do this we compute the Fourier 
transform of (21) in the 1x1 > 1 region for which the self-energy (15) is purely real. For 
simplicity, we also expand the Lindhard function in powers of I / x :  

1 m j l ) ( o ) ~ p l t  -02 sgn(o) + 0 ( ~ 3 / k : )  k: 

If op >> A the system does not see the plasmons and Fermi liquid behaviour is retained. 
In the opposite limit of wp cc A, however, the plasmons destroy the Fermi liquid. The 
important point is that, in the case of the equal-time propagator, the integral over q yields 
a logarithmic dependence on xi = 6s  .I due to the factor q2 = q: + qf appean'ng in the 
denominator. Setting t = XI = 0 we find 
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Since U > (qI in the integral, we make the approximation of replacing [U-qu +iqsgn(o)J2 
with o2 + iq' in the denominator and then carry out the integrations. Upon exponentiating 
the boson Green function we obtain the Fermi quasiparticle propagator in configuration 
space: 

where 

The appearance of the anomalous exponent { is a consequence of bosonization, which 
treats the interaction non-perturbatively and thus improves upon RPA which gives instead a 
logarithmic dependence on the system size [12]. Evidently, the quasiparticle pole has been 
destroyed by the super-long-range interaction. An evaluation of the fermion propagator in 
the opposite limit of z = 0 and at large times t. however, yields the usual t-' Fermi liquid 
form as screening is effective at low frequencies. Likewise, thermodynamic properties that 
are defined in this equilibrium q-limit, such as the specific heat, also have the usual Fermi 
liquid form. Note that in either limit the propagator is odd under the combined C P T  
operation of (z, f )  -+ -(z, t )  and complex conjugation as demanded by Fermi statistics. 

Repeating the calculation for a Coulomb interaction in either two or three dimensions 
we easily find that the propagator has the standard Fermi liquid form. The quasiparticle 
pole suffers no additional renormalization beyond the factor Z k  appearing in (2). 

We examined the effects of long-range interactions on fermion liquids by bosonization 
in dimensions greater than one. We find that the Fermi liquid state is the only solution to the 
problem of a degenerate gas of fermions interacting via the Coulomb two-body interaction 
in two and three spatial dimensions. Bosonization allows us to go beyond an assumed 
Fermi liquid form for the quasiparticle propagator. Indeed. the fact that the bosonized 
Hamiltonian separates into charge and spin parts, H = H, + H,, leads to the possibility 
thac as in one dimension [4], the quasiparticle propagator might also exhibit spin-charge 
separation, especially in the case of the Coulomb interaction which is singular. Spin-charge 
separation in dimensions larger than one would, however, destroy the Fermi liquid as the 
key element, the existence of a pole in the single-particle Green function with non-zero 
spectral weight would be replaced by a branch cut and the pole would be destroyed. This 
does not happen because the location of the pole of the boson propagator is unchanged from 
its free value in the A -+ 0 limit. Consequently, the spin and charge velocities are equal 
and both degrees of freedom propagate together in the usual quasiparticle form. On the 
other hand, the Fermi liquid form is desboyed in the case of the super-long-range interaction 
studied by Bares and Wen. 
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